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A new discretized version of the Dirac propagator in d space and one time 
dimensions is obtained with the help of the 2d-state, one-dimensional Potts 
model. The Euclidean version of this propagator describes all conformational 
properties of semiflexible polymers. It also describes all properties of fully 
directed self-avoiding walks. The case of semiflexible copolymers composed 
of a random sequence of fully flexible and semirigid monomer units is also 
considered. As a by-product, some new results for disordered one-dimensional 
Ising and Potts models are obtained. In the case of the Potts model the non- 
trivial extension of the results to higher dimensions is discussed briefly. 
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1. I N T R O D U C T I O N  

A simple model of semiflexible polymers which for the fixed polymer length 
exhibits a rigid-rod to random-coil type of transition has been well 

known for some time. (1) Only recently (2'3) was it recognized, however, that 
this model is directly connected with the Euclidean version of Dirac's 
propagator, so that the rigid-rod to random-coil transition can be 
associated with the transition from the ultrarelativistic to the nonrelativistic 
limit of the Dirac propagator. 

It is well known that the path integrals are well defined if and only if 
there is some systematic discretization procedure so that the path integrals 
can be understood as some limits of ordinary multidimensional integrals. 
In the case of the Dirac propagator there are many ways to write the 
corresponding path integrals. It is not my purpose to give here the corn- 
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plete list of path integrals all of which produce the Dirac propagator. Such 
a variety of methods to obtain the Dirac propagator is motivated mostly 
by the desire to better understand its two-dimensional generalization 
known as superstrings. 14/Here, however, I am interested in use of the Dirac 
propagator for semiflexible polymers. For this purpose I am going to 
present a detailed calculation of the Dirac propagator based on a one- 
dimensional Potts model. These results were briefly announced in my 
earlier work. ~3) 

The rest of this paper is organized as follows. In Section 2 the connec- 
tion between the Dirac equation and the directed self-avoiding random 
walks is established. In Section 3, I consider the construction of the (1 + 1)- 
dimensional Dirac propagator with the help of the one-dimensional Ising 
model. These results are known, and are included here as a warmup 
exercise for the more complicated (d+  1)-dimensional version of the Dirac 
propagator constructed subsequently with the help of the Potts model. 
Because the main features can be seen already for the (1 + 1)-dimensional 
case, the end of the section is devoted to various applications of the 
obtained results to solutions of semiflexible polymers. Section 4 is solely 
devoted to obtaining the (d+  1)-dimensional Dirac propagator using the 
2d-state, one-dimensional Potts model. Here some new methods of solution 
of the Potts model in a magnetic field are presented. The results are further 
generalized to the case of quenched disorder, in Section 5. Here the case of 
random copolymers consisting of a mixture of semiflexible and totally 
flexible units is considered. As a by-product, some new results for the Potts 
model are obtained. These results are not restricted to the one-dimensional 
case and allow one to simplify in principle the calculations of thermo- 
dynamic properties of the Potts model (including the case of magnetic 
field) in higher dimensions. This and other topics are briefly described in 
Section 6. 

2. DIRECTED SELF-AVOIDING WALKS AND THE 
DIRAC EQUATION 

It has become rather customary to consider configurational statistics 
of linear polymers in terms of ordinary random walks (5) placed on some 
regular d-dimensional lattice. It has been argued that the above random 
walk models are adequate for sufficiently long chains for which the trans- 
gauche conformational barriers (to be defined below) are rather low. In this 
case the weakly temperature-dependent length scale l, called the persistence 
length, can be associated with the effective size of lattice link (the effective 
monomer size), so that beyond the scale l, polymers are considered as 
totally flexible. This picture becomes incorrect when the temperature of the 
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environment is lowered (so that the conformational barriers become 
increasingly high) or for sufficiently short chains, i.e., those chains which 
are comparable in length to/ .  

To model such types of polymers it is useful to consider the modifica- 
tion of the ordinary random walk known as the directed self-avoiding walk 
(DSAW) model. Although this model was introduced rather long ago by 
Feynman and Hibbs as Problem 2-6 in their famous book, (6) it was only 
recently and independently rediscovered by people working in statistical 
mechanics. ~7-9) Such a situation can be explained, perhaps, by the fact that 
the solution of Problem 2-6 was published much later as a research 
paper/1~ and was left mainly unnoticed. In ref. 10 only the case of d =  2 
was considered in detail, while in ref. 3 the generalization to arbitrary d was 
given without derivation. Here I provide all the necessary details. 

Following Feynman and Hibbs, ~6) begin with the consideration of the 
(1 + 1)-dimensional case [one space (x) and one time (t) dimension] in 
order to fix the notations. Consider the square lattice with e being the size 
of a link. Rotate now the lattice counterclockwise by 45 ~ with respect to 
some chosen lattice corner, which from now on is considered to be an 
origin of the coordinate system such that the coordinate axes go through 
the diagonals of the lattice squares: the x axis is allowed to have both 
positive and negative values, while the t axis is restricted to have only non- 
negative coordinate values. Consider now a motion of a particle on such a 
lattice. The particle can move straight (trans) or change its direction 
(gauche) by 90 ~ at the corners of the lattice. The particle can move back 
and forth along the x axis, but only forward along the t axis. Let al = 
(x~, t~) and a2 = (x2, t2) be the initial and the final positions of the particle 
on the lattice and let N(R) be the total number of walks of N steps long 
starting at a , ,  ending at a2, and having exactly R turns along their paths. 
Following Feynman and Hibbs ~6) (see also refs. 3 and 10), one introduces 
the lattice propagator K~(al, a2) given by (in the system of units h = c = 1) 

K~(al, a2)= ~ N~(R)(i~m) R (2.1) 
R - - O  

where a, and fl correspond to the initial (final) orientations of the walk: to 
the "right" ( + )  or to the "left" ( - ) .  Here the "mass" m represents the 
"bending" factor (i.e., each turn is associated with some bending energy: to 
go straight costs nothing, but to change the direction costs m each time; in 
the case of polymers, it can be, in principle, calculated microscopically) and 
the imaginary i is introduced because initially the above type of walk is 
considered in Minkowski space (to make a connection with the Dirac 



294 Kho lodenko  

equation) and only when the explicit form of the propagator is found (1~ is 
the Euclidean rotation going to be made. (2'3) The Euclidean version of the 
above problem evidently corresponds to the problem of the D S A W .  (7-9) 

Usually one makes an average over the initial positions and sums over the 
final positions of the walk (as it is done in the continuous limit for the 
Dirac particle(m). Because of that, the quantity of interest is actually 

K(al, a2) = ~ K~(al, a2) p(~) (2.2) 
~,fl 

where p(~) can be interpreted as the discrete version of the polarization 
matrix. ~ Without loss of generality, in the subsequent discussion I shall 
consider only nonpolarized cases for which p ( + ) = p ( - ) =  �89 and these 
factors are absorbed into K~.~. The actual proof that the above problem is 
indeed associated with the Dirac propagator can be found in refs. 10 
and 12. It is also helpful to know the close connection between the Poisson 
type of random processes and Dirac's equation(~3'14): the case of an 
ordinary random walk is related to the stochastic Wiener process (or 
Brownian motion) in the same way as the DSAW problem is related to the 
Poisson-type process. If the diffusion equation is related to the Schr6dinger 
equation via replacement of the time variable t by _ it, the same is true for 
the relation between the telegraph equation and the Dirac equation/~3) In 
order to provide the most general (d+ 1)-dimensional statistical mechanics 
representation of Dirac's propagator, the auxiliary (1 + 1)-dimensional 
results are of some help and I provide them below solely for reader's 
convenience, closely following the treatments given in refs. 3 and 10. 

3. (1 +1 ) -DIMENSIONAL DIRAC PROPAGATOR FROM 
1-DIMENSIONAL ISING MODEL AND CONFORMATIONAL 
STATISTICS OF SEMIFLEXIBLE POLYMERS 

The famous fermionization of the two-dimensional Ising model is well 
known. (ls~ It is most helpful in studying the vicinity of the critical point. 
Here I am going to consider just the opposite: "bosonization" of the Dirac 
fermion with the help of the one-dimensional Ising model. 

If N+ (N_) represents the total number of steps to the right (left), 
then one gets N = N +  + N  and M = N + - N  . In view of the above 
definitions, the time interval is given by 

N~ 
t 2 - t l - -  f~  (3.1) 
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while the space interval is given by 

Me 
x2 - xl - x/~ (3.2) 

Here the factor of l /x /2  appears because our lattice has been rotated 45 ~ 
counterclockwise with respect to the original position. Introduce now a 
system of N Ising spins a~, i =  1 - N, and associate the ith step with ai, so 
that a~= +1 ( - 1 )  will correspond to the move of the particle to the right 
(left). With such a defined rule for spins, the "magnetization" is given by 

N 
M = N + - N _  = ~. a~ (3.3) 

i = l  

The number of turns R in this formalism is given by 

1N- -1  

R = 2  E (1 - o i o i +  1) (3 .4)  
i = l  

With the help of Eqs. (3.3) and (3.4) one can rewrite Eq. (2.1) in the 
following form: 

Kc41(a1, a2) = ZOI~N(N, M; j) 

= 2 '  "'" 2 '  e x p l  
o'2= +1 ffN-I = ! l  I_ 

N 1 ] 
j Y~ (a io i+l - l t  (3.5) 

i=1 

where j =  -(1/2)ln(iem) and the primes on the summation signs indicate 
that the partition function Z should be actually evaluated under the 
constraint given by Eq. (3.3). To account for this constraint explicitly, it is 
convenient to introduce the "momentum" representation given by 

N 

Z~I,,N(N, It; j) = ~ e~Nzol,,N(N, M; j) 
M =  N 

= ~ e x p  # 2 ~ r i + j  2 (~  
{~} i=1 i=1 

(3.6) 

where {a} represents the spin summations from ~r 2 to o N_ 1 as before. Let 
t = t 2 - t 1 and x = x2 - xl ;  then Z(N, M; j) ~ K(t, x) and, accordingly, 
Z(N, #; j) ~ K(t, p), where the momentum variable p is determined by the 
relation M# = - ipx  or 

e 
#= - ip  f-~ (3.7) 
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Use of the transfer matrix methods now produces (N ~ oo) 

Zq~u(U,#;j)=2Uq)+(al)qO+(aU)+2U_fp_(al)q) (aN) (3.8) 

where 2+ and ~o_+ are eigenvalues and eigenfunctions of the matrix 
H(ai, ai+ 1) given by 

H(o-i, a~+ 1)= exp [2  (ai + ai+ 1)+ j(~riffi+l-l)] (3.9) 

In actual computations one has to remember that exp( -2 j )= iem and 
# = -ip(e/,,/2). This then produces the matrix [by keeping only the terms 
of order not higher than o(e)] 

(1--ip(~/~-2) iem 
Ilnll = i~m 1 + ip(e/~2)J (3.10) 

which has eigenvalues 

2-+ = 1 --T- iemE (3.11) 

where E 2 = 1 + (p2/2m2). The eigenfunctions accordingly are given by 

~o+(~ = 

P ,~71/e 

_ 1 ) =  [_1 (1 P ~ l  '/2 ~o ( a=  
L2\ 

where m' = m .,f2. 
Taking into account Eqs. (2.2), (3.8), (3.11), 

easily obtains the final form of the propagator (1~ 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

and (3.12)-(3.15), one 

( ;) ( ')eim 't3,6, G(p, t )=~K=p(p , t )=  1 -  e im'E,+ 1 + ~  
~,~ 

In arriving at the last result, Eq. (3.1) has been taken into account and the 
fact that 

e=  lira (1 +~)1/~ 
~ 0  + 
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The proof that Eq. (3.16) does indeed represent Dirac's propagator can be 
found in ref. 10 and is not going to be reproduced here. An alternative 
proof can be found in ref. 12. If the multidimensional situation is being con- 
sidered, then one should formally replace p2 by p2 in the above equation, 
as can be easily seen from the consideration of the nonrelativistic limit 
(pZ/m2~ 1) of the propagator, Eq. (3.16). In this limit E ~  l + (pZ/2m'2) 
and one obtains immediately 

G(p, t) ~- 2eim'te i(p2/2m')t (3.17) 

which coincides with the result given in Feynman and Hibbs./6) This 
concludes the consideration of the (1 + 1 )-dimensional case. 

In previous work (2"3) I have provided enough evidence that all the 
conformational properties of semiflexible polymers are described by Dirac's 
propagator. Here I present a brief summary of the results in order to 
extend them to higher dimensions (Section 4) and to the case of quenched 
disorder to be considered in Section 5. 

The standard random walk which describes the conformational 
statistics of fully flexible polymers (5'15) (without the excluded-volume 
effects) is characterized in terms of the end-to-end Gaussian distribution 
function G(R, N), R = R 1 - R 2 ,  where 111~2)is the initial (final) position of 
the walk of N effective steps with respect to some chosen system of coor- 
dinates. The single-chain partition function is Z / V =  ~ dR G(R, N), where V 
is the volume of the system (e.g., polymer plus solvent). With help of 
G(R, N) the important moments, e.g., (R2), etc., can be obtained which 
characterize the size of the macromolecule in solution. Evidently, 

(R 2) oc - - i n  G(p, N) (3.18) 
OP 2 = o 

In the case of standard Brownian motion, G(p 2, N ) =  exp(--Ap2N), with A 
a known constant. Use of Eq. (3.18) produces then (R 2) ~2V, as expected. 
For the semiflexible polymers it has been known for quite some time (x) that 

(R2)  = 2Nq - 2~/2 [1 - exp ( -  ~ ) ]  (3.19) 

where q is the phenomenological rigidity parameter, which is connected 
with the mass of the Dirac particle. (2'3) To reproduce the above result, it is 
sufficient to use the Euclidean version of the Dirac propagator, Eq. (3.16). 
Indeed, performing the usual rotation _+ it --* ff~, where the " + "  or " - "  sign 
is determined by further convenience and the parameter N is related to the 
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number of effective links in the way described below, one obtains, instead 
of Eq. (3.16), the following result/2'3): 

2 , 
G(p, N) = 2 cosh(m'EN) + b2 sinh(m EN) (3.20) 

The combined use of Eqs. (3.18) and (3.20) produces 

1 0G aE ,=0 = b? 1 (1 e -2m'~) (3.21) 
~R2) -G  0E0p 2 2m' 4m '2 

If now I choose m '=  (2 ,,f2 q) t and ~ ' ~  Arxf2 , Eq. (3.19) is reproduced. 

The relationship N=~ 2V x/2 is obvious from the geometry of the lattice, 
as described in Section 2, while the connection between t/ and m (or m') 
essentially establishes a link between the phenomenological (macroscopic) 
rigidity parameter and the microscopic mass parameter related to the 
trans-gauche bending energy AE as am=(z-2)exp(-AE/T),  as was 
explained in Refs. 2 and 3. Here z is the coordination number of the lattice. 

Equation (3.21) can be given a thermodynamic interpretation which 
is going to be used below. Taking into account Eqs. (2.2) and (3.6) and 
keeping in mind that # = -ip(~/x/2), one obtains 

(R2)  = (x/2~2 zN (3.22) 
k ie /  

where the susceptibility Z is defined in the usual way as 

•2 [ l l n Z ]  ~=o (3.23) 

To understand better the nature of the relationship em=(z-2)  
exp(-AE/T), following Flory, (16~ consider the problem of packing a 
monodisperse ensemble of semiflexible polymers onto some arbitrary lattice 
with coordination number z. Concentrating our attention on a particular 
polymer chain modeled by the semiflexible random walk, one is confronted 
with the following situation. After a given step is made for the walker there 
are two options: (a) to keep going in the same direction (trans) or (b)to 
change the direction (gauche), provided that the immediate self-reversals 
are excluded. The first option is weighted with the conditional probability 
one, while the second is weighted with the factor (z-2)exp(-AE/T)  
(where AE can be calculated, in principle, quantum mechanically). 



Potts Model, Dirac Propagator, Semiflexible Polymers 299 

According to Flory, (16) the average number of turns R per lattice link is 
given by 

(z - 2) exp(-AE/T)  
R - (3.24) 

1 + (z -- 2) exp(--AE/T) 

In order to obtain the above result from our formalism, it is sufficient to 
use a single-chain partition function Z = G(p = 0, 3)), which, if boundary 
effects are neglected, is given by Eq. (3.6) with /~=0. Introducing dual 
variables Si= ~/ri+l,  one obtains at once the result for Z, 

1 1 
In Z = @~ In Z(N, 0; j) - j  + In 2 cosh j 

N 2 u  
(3.25) 

From here, taking into account Eqs. (3.4) and (3.5), one obtains 

1 ~ 1  
R -  2 0 j ~ l n Z =  ( 1 - t a n h j )  (3.26) 

Recall now that j =  -�89 (Euclidean version). Finally, if one puts 
em=(z-2)exp(-AE/T) in the previous equation and substitutes this 
result into Eq. (3.25), one obtains back Flory's result, Eq. (3.24). Now 
using Eqs. (3.6) and (3.25), one can obtain as well the following result 
for Z: 

l l n  Z =  in [ t  + ( z -  2) exp ( -  ~ - ) 1  (3.27) 

The last result also coincides with that obtained by Flory. (16) Use of 
Eq. (3.20) produces as well 

1 
- - l n Z =  1 +~m (3.28) 
N 

which evidently coincides with Eq. (3.27), taking into account the limiting 
formula for e and that N = 3)/e. 

Further developments can be found in ref. 3. In arriving at the result 
(3.21), I have used the (l+l)-dimensional version of the Dirac 
propagator, silently assuming that the replacement p 2 ~  p2 in Eq. (3.1'7) is 
sufficient in order to extend the above results to higher dimensions. 
Although by requirements of continuity and homogeneity of space this, 
evidently, should be the case, it is desirable to provide more direct evidence 
that this is indeed the case. This is accomplished in the next section. 
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4. ( d +  I ) -D IMENSIONAL DIRAC PROPAGATOR FROM 
ONE-DIMENSIONAL,  2d-STATE POTTS MODEL 

It is well known that the case of the Ising model can be considered as 
a special case of the Potts model./17~ Because of this observation, it is 
possible to generalize the results presented in Section 3 to the multidimen- 
sional case by using the Potts model. This was already announced in ref. 3. 
Here I provide all necessary details related to this case. 

By analogy with Eq. (3.4), one can define now the number of turns R 
a s  

N - I  

R =  (4.1) 
i = l  

where the Potts variable 2 takes values 2 = 1, co ..... c02e- 1, co = exp{2rci/2d}. 
Equations (3.1) and (3.2) remain the same, while Eq. (3.3) is replaced by 

N 

Mi = 2 ~ (6#.~, - �89 (4.2) 
j = l  

with i = 1 - d, 2 (i) is equal to one of the possible values of 2 associated with 
the ith positive spatial direction of the lattice (rotated by 45 ~ as before), 
irrespective of the actual position of the j t h  link. With such defined R and 
M~ one can now easily write the partition function for a general 
d-dimensionally, fully-directed walk. It is given by 

Z~.I),N(N,/21 , ' " ,  # d ;  J ) =  ~ exp #l (6~.,,x(,l- �89 
{2} 1 i = l  

x exp j ~ ((5~i,J.i+l- 1) (4.3) 
i = 1  

where the Potts summation (2) runs over the sites from 2 to N - 1 .  The 
one-dimensional Potts model is known to be exactly soluble ~8) (at least in 
zero magnetic field) for arbitrary number of components d; therefore the 
problem of fully directed walks is solvable as well. (7/In practice, however, 
there are some technical problems toward the exact solution of Eq. (4.3). 
Indeed, according to ref. 18, the problem of calculation of Eq. (4.3) can be 
accomplished by use of transfer matrix methods. In the case of the Potts 
model the computation of the determinant of the corresponding transfer 
matrix is possible (for /~=  0, l =  1 - d )  because the determinant for this 
case is known as a circulant. ~19) When at least one of the #~ is nonzero, the 
corresponding determinant is no longer a circulant and the standard 
methods ~ cannot be applied. Because of this, some new methods have to 
be developed. They are going to be presented below. But first I would like 
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to consider the simplest case of zero "magnetic" field in order to compare 
the result obtained by the new method with that given in Eq. (3.27). In the 
case when the/~t are all zero one obtains the following 2dx 2d matrix IIQll, 
using Eq. (4.3): 

i j 1 --- 1 ) 
e j . . .  

IlQIl=e J " ' ' "  i 

\ 1  1 - - -  J 

(4.4) 

According to results of ref. 18, one obtains the following eigenvalues of Q: 

21 = 1 + ( 2 d -  1) e J (4.5) 

2i = 1 - e J, i = 2 - 2d (4.6) 

Let, as before, j =  - ln(em) and let, furthermore, em = e x p ( - A E / T ) ;  then 
for N ~ oe one obtains 

1oE1+,2  j 
When this result is compared with Eq. (3.27), one recognizes that one has 
to replace z -  2 by 2 d -  1. For the square lattice z = 4, but, by virtue of the 
construction of the DSAW, the e f f ec t i ve  coordination number g is actually 
3, so that z - 2  should in fact be replaced by ~ - 2 .  With such replacement 

- 2 = 2 d -  1, as expected. 
Consider now the case when /~t r 0. One can immediately recognize 

that the determinant of the transfer matrix is no longer a circulant. 
Although the most general case of al l  #~ r 0 can be, in principle, discussed, 
in fact there is no need to do this if one is interested only in computation 
of (R2).  Taking into account Eqs. (3.21)-(3.23), it is sufficient to consider 
the case of only one #t which is nonzero. Without loss of generality, one 
may always choose #Z=#l-=#.  In this case the corresponding transfer 
matrix is given by 

~ , ~ ( i , i + l ) = e x p { l ~ [ ( ~ , , ~ l ~ - l ) + ( 6 ; ~ , + l . ~ , ~ - � 8 9  (4.8) 

or, more explicitly, 

(e i e J e J e J) 
e - j  e - ~  e J - t ~  . . .  e - j - #  

I[~t[ = e -J  e - J - #  e -~" . . .  e i -~ ,  (4.9) 

e y e J-~ e u 
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In order to calculate the eigenvalues of the above matrix, consider first 
an auxiliary problem of computat ion of the eigenvalues of the matrix Ib TII 
of the following type: 

I I T I I  = a . . .  (4.10) 

Evidently, the determinant of the above matrix is circulant and it can be 
computed with the use of standard methodsJ ~9~ Because, however, our  aim 
is computat ion of the determinant of IIYI[, given by, Eq. (4.9), a different 
method is going to be developed below. Introduce a vector x = (Xl,..., Xq) 

and consider the matrix equation 

l i T -  hi II x = 0 (4.11) 

Use of Eqs. (4.10) and (4.11) allows one to write 

(a - 2) X 1 - -  bx l  = - b S  

(a - Z) x2 - bx2 = - b S  

( a  - -  ,)~) x q  - -  bXq  = - b S  

(4.12) 

where S = zq= ~ xi. This can be equivalently rewritten as 

( a -  2 -  b ) x l  = - b S  

(a - 2 - b) Xq - ~  - b S  

(4.13) 

from which it follows that if a -  Z -  b r  then x~ = x2 . . . . .  Xq = x(1), 
whence 

( a - Z - b )  x ( 1 ) =  - b q x ( 1 )  (4.14) 

o r  

a - b + b q = Z  

Let a = 1, b = e - j  [see Eq. (4.4)]; then one obtains 

Z l = l + ( q - 1 ) e  J (4.15) 
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in complete agreement  with Eq. (4.5). Let a - 2 -  b = 0, which is equivalent 
to 2 2 = 2 3  . . . . .  2 q =  1 - e  - j  [see Eq. (4.6)]; then x is subjected to two 
constraints,  y'7= 1 x i ( j )  = 0 and 52q= 1 x 2 ( j )  = 1, where j = 2 - q. In  the case 
of  21 we also have Zq  x 2 ( 1 ) =  1, but  this time we actually obtain l = l  

qx2(1) = 1, or 

1 
x(1) = x/.  ~ (4.16) 

For  the case j = 2 - q, in order to satisfy both  constraints, it is sufficient to 
choose 

x ~ ( j )  = ~ q  exp j (4.17) 

where k =  1 - q ,  j =  1 -  ( q - 1 ) .  Indeed, it is easy to check (17) that  

k = l  

and, in addition, one has to use the or thogonal i ty  condit ion 

(4.18) 

q 

xk ( i )  x ~ ( j )  = ~50 (4.19) 
k = l  

The last results as well as Eq. (4.16) are in agreement  with that  given in 
ref. 18. Consider  now, in view of Eq. (4.9), the following matrix: 

(i be ....... !) 
IrG]l = d c -.. (4.20) 

d . . . . . . .  

Such a matrix equat ion analogous  to (4.11) produces the following result: 

(a - ~ - b) Xl = - b S  

( c  - 2 - d )  x 2 + (b  - d )  x 1 = - d S  
(4.21) 

( c  - 2 - d )  Xq + (b  - d )  x~ = - d S  

From here if c - 2 -  d #  0, one obtains x2 = x3 . . . . .  x ,  = x ,  so that  S = 
xl + (q - 1 )x. If, however, c - d -  2 = 0, then one obtains 2 = c - d on one 

822/65/1-2-20 
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hand and 2 = b - a  + (b /d ) (b -d)  on the other. From here one concludes 
that, in the general case, there is no such )~ which satisfies 2 = c -  d. Let, 
furthermore, a - 2 - b = 0 ;  then one obtains S = 0 .  Using 2 = a - b  in 
Eq. (4.21), one concludes that the requirement S = 0 can be satisfied if and 
only if b = d  and c - d = a - b .  But this is indeed the case when p = 0 ,  
because for this case a = 1, b = iem, c = 1, and d =  iem, whence one obtains 
back the result (4.17). Let now a - b # 2 ;  then, going back to Eq. (4.21), 
one obtains 

( a - 2 )  x l + b ( q -  1 ) x = 0  

bXl + [ c - 2 - d ( q -  2 ) ]x=O 
(4.22) 

Consider first the case q = 2. An easy calculation shows that 

)h2 c+ a [(~a_)2 ]1/2 
' 2 +- + b Z - a c j  (4.23) 

because a = e ~  1 - ipe /x f2 ,  b=iem, c ~  1 + ipe/xf2, and d,,~i~m [-see 
Eq. (3.10)], using Eq. (4.23) and keeping only the terms of O(e) produces 
back rsult (3.11), as required. For general q a little algebra produces 

1 
21,2 = }  [ c + a - d ( 2 - q ) ]  

<+a q 7 
+ 2 

+ b2(q - 1) - a [ c -  d(2 - q)] }~/2 (4.24) 

It is of interest to demonstrate first that the roots 21 and 2 2 coincide with 
results already obtained [i.e., 21 = 1 + ( q -  1) e - j  and 22= 1 - e  J] in the 
limit when p--* 0. In this case one obtains a = c = 1, b = d =  i~m. Substitu- 
tion of these values back into Eq. (4.24) produces the anticipated result. 
This indicates that the root 22 is ( q -  1)-fold degenerate in this limiting 
case, as before. Let now p # 0; then one obtains 

21.2 = l -- iem ( 1 - 2 )  + i~m(q-1)1ri f t  (4.25) 

where 

2m2 q _ 1,  2+1  426, 
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For q = 2  (Ising model case) one recovers back the result (4.13), as 
required. It is convenient to make the following redefinitions: 

m r 

m -  [ 2 ( q -  1)] 1/2 (4.27) 

and 

(4.28) 

With such redefined m and p one obtains (omitting the primes) 

ie m 
)~ 2 1 2 ( q - 1 ) ] l / 2 ( 2 - q ) + i e x / 2  (4.29) 

where, as before, ~ 2 =  1 + p2/m2 [see Eq. (3.11)]. 
Consider now the computation of the corresponding eigenvectors. 

Using Eq. (4.22), one obtains 

b(q - 1 ) 
x l -  - - x  (4.30) 

Combining this with the normalization condition (4.19), one obtains 

[ ( b 2 ( q z l ! , ~ ]  1/2 (4.31) x = +  ( q - l )  1~ ( a _ 2 ) 2 j ]  

As before, it is of interest first to check what happens in the limit p --* 0. In 
this case a = l ,  b=igm, 21=l+(q-1)iem, 22=23 . . . . .  2 q = l - i g m ,  
and one obtains 

1 
x(1) =- +_ (4.32) 

x(2) . . . . .  x (q)=  • [q(q - 1 )31/2 
(4.33) 

In view of Eq. (4.30), the result (4.32) is in agreement with that previously 
obtained, Eq. (4.16), while Eq. (4.33) is in disagreement with Eq. (4.17). To 
understand better what has happened, it is instructive to go back to 
Eq. (4.21). For 2=-22 one obtains a - b = 2  and, thus, S = 0 .  Also in this 
case b = d and 2 = c - d .  Whence, the result (4.17) is recovered. The solu- 
tion given by Eq. (4.33) is, nevertheless, a legitimate solution as long as 
p r 0 and cannot be simply discarded: the presence of finite p [i.e., finite 
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magnetic field, see Eq. (4.3)] breaks the rotational symmetry of solution 
(4.17), so that the p ~ 0  and p = 0  solutions of the system of equations 
(4.21) are different, but physically meaningful solutions. This statement is 
supported further by considering the case p # 0  (see also Section 5) using 
different methods. In the meantime for 2 = 2, one obtains using Eq. (4.31) 
the following result: 

1 1)] 1/2.( p' 1\  1/2 
x =  • [ 2 ( q -  1 _ + ~ )  (4.34) 

E2= 1 +p'2/m'2 and p', m' are given by Eqs. (4.27), (4.28). Combining 
Eqs. (4.30) and (4.34), one obtains as well 

1 ( p ' l )  v2 
X l =  -T- 3 1-T-~--;~ 7 (4.35) 

In the case when q = 2 one obtains back Eqs. (3.12)-(3.15), as anticipated. 
Using Eqs. (4.29), (4.34), and (4.35), it is rather easy to write down the 
final form of the propagator. In order to do so, one must recall Eqs. (3.1) 
and (3.16) and recognize a complete symmetry between different/~l which 
comes from an analysis of Eq. (4.3). With this remark one obtains 

- -  i m ' E t  
e 

(4.36) 

the Ising case result, where E 2= 1-I-p'2/m '2. For q = 2  one recovers 
Eq. (3.16), as required. Computation of (R  2) will produce now the same 
result, Eq. (3.21), in agreement with the discussion presented in Section 3. 
This concludes the discussion of the Potts model version of the Dirac 
propagator. 

5. C O N F O R M A T I O N A L  STATISTICS OF SEMIFLEXlBLE 
CHAINS IN THE PRESENCE OF Q U E N C H E D  DISORDER 

Recently there has been a great deal of interest both theoretically (2~ 
and experimentally (22 25) in studying of solutions of random semiflexible 
copolymers. Technologically random semiflexible polymers can be rather 
easily produced. (22~ The above type of macromolecules "have varied levels 
of internal flexibility, but never enough to permit random coil formation. 
Their characteristic states are generally described as liquid-crystalline. ''(22~ 
In a set of remarkable experiments by Stupp and co-workers (23 25) two 
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types of thermotropic copolymers were synthesized and properties of their 
solutions were studied. Both types of copolymers contained (on average) 
equal amount of three types of monomers. Two of the monomers A and B 
were rigid, while the third C was flexible. The first copolymer was ordered 
with repeat unit ...CABCBA... and was found to exhibit a sharp nematic to 
isotropic transition at 275~ The second copolymer was disordered, but of 
the same chemical composition on average. In contrast to the ordered case, 
solution of such copolymers exhibited a broad biphasic region over the 
temperature range 250-400~ In this temperature range an isotropic fluid 
phase is observed to coexist with a nematic birefringent phase. Pure 
nematic and isotropic phases, respectively, were observed at temperatures 
below and above the biphase region. 

Because of these findings, it is of interest to extend the results of 
previous sections to the case of a random Bernoullian type of disorder. The 
reader may also be interested in applying the methods presented below to 
other, more sophisticated models of random copolymers which were 
studied by the author some time ago. (26) It is convenient to subdivide the 
subsequent developments into two parts by treating Ising and Potts cases 
separately. 

5.1. Conformat iona l  Stat ist ic of  Is ing-Type Random 
Copolymers 

The randomly diluted one-dimensional Ising model has been studied 
by many authors. (27-29) Unfortunately, one cannot use directly the above 
results, for reasons which will become apparent. 

Consider first the bond diluted Ising model in zero external field 
(/~ = 0) given by Eq. (3.6). Neglecting boundary effects [see Eq. (3.25) and 
the definition of Si given there] one has effectively 

Z(j)= ~ expI~ Ji(Si-1)l (5.1) 
{s} 

where Ji  is a random coupling such that Ji  = J with probability f and Ji = 0 
with probability 1 - f .  Performing the spin summation in Eq. (5.1), one 
obtains 

Z(j) = l-[ (2e s, cosh Ji) (5.2) 
i 

From here one easily obtains 

1 
(In Z(j))i= In 2 - J j  + f i n  cosh j (5.3) 
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which is in formal agreement with the result given by Wortis. (29) More 
accurate calculation [-see e.g., Eq. (3.27)], which accounts for the boundary 
effects (open chain vs. closed), produces 

1 
(ln Z(j) ) f  = f ln(1  + e -2j) (5.4) 

where ( - . . ) i  denotes the operation of the disorder averaging specified 
above. Although the 'result for the free energy, Eq. (5.4), was obtained 
rather effortlessly, this is not the case when the "magnetic" field is present. 
The previous authors restricted themselves to the computation of suscep- 
tibility, which in our case, because of Eqs. (3.22) and (3.23), leads to the 
computation of (R  2). Fortunately, that is all that is needed for the present 
case. Use of results obtained by Wortis (29) produces the following result for 
the susceptibility: 

1 + f tanh j 
(5.5) 

Z -  1 - f t a n h j  

which for the case f = 1 produces formally correct (from the point of view 
of thermodynamics of Ising model (18/) but an absolutely wrong result for 
(R2) ;  see Eqs. (3.6), (3.22), and (3.23). It is for this reason that the 
computations given in refs. 27-29 should be reconsidered. 

Begin again with Eq. (3.6). Now it can be rewritten as follows: 

b ds(l+ 2 
Zo~ou(N, # ; j ) =  (cosh #)N 2 '  (1 q-z , , i+ 10i0i+ 1) 

{~} i 
sites 

x [ I  (1 + ~aj) (5.6) 
J 

where zi.i+~ = tanh Ji and 2= tanh #. The spin summation, in the case of 
Eq. (3.6), includes spins from o-2 to aN-1. The prime on the summation 
sign indicates just this. In view of Eqs. (2.2) and (3.16), matters can be 
simplified because the final result for the propagator, Eq. (3.16), already 
includes the summation over the remaining spins a~ and O'N. Thus, hence- 
forth the prime on the spin summation is going to be omitted. Because I 
am interested here only in the computation of (R2),  further simplifications 
are possible. In particular, one may write 

sites N N 
I~ ( l + 2 r r j ) = l + Y  ~. r r ,+Y 2 ~ rriaj+ ... (5.7) 
j i=l  i , j - 1  

i < j  
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where the terms denoted by dots are not going to be used in the computa- 
tions of (R2). Now, if #=0 ,  one obtains back the result Eq. (5.4) upon 
bond averaging, if /~ ~0; however, the only additional terms which are 
going to survive the spin summation are those which are obtained by 
contraction between the expansion given by Eq. (5.7) and that given by 

bonds 

I-I ( l q - z i ,  i + l c r i c r i + l ) = l q - ~ z i ,  i + , G i r r i + l  
i i 

71- ~ ,  Zi, i + l ( Y i a i + l Z j ,  j + l G ) ~ . j + l  q- "'" (5 .8)  
i < j  

Multiplying Eqs. (5.7) and (5.8) and performing spin summation, one 
arrives at the following result: 

1 
27 • Eq. (5.7) x Eq. (5.8) 

{o} 
= 1 q- ( N - -  1 ) z2z -}- ( N -  2) Z2Z2 q- ( N - -  3) Z2Z3 + " ' "  q- Z2Z N -  1 

= I + s  (N 3 ) +  . - .  + 1 ]  (5.9) 

Here z,-i+ l -= z. In standard treatments (27 29) the finite-size effects are com- 
pletely ignored. In this case one would obtain instead of Eq. (5.9) the 
following result: 

2-~ ~2 Eq. (5.7) x Eq. (5.8) = 1 + N.~ 2 z m = 1 + N z  2 z (5.10) 
{o-} m = l  1 - - Z  

In the nonrandom case on then obtains 

1 ~2z 
- -  ( 5 . 1 1 )  ~ l n z = l n c o s h / ~ + l n ( l + e  2 J ) + l _ z  

From here one obtains 

z - -  Z Z c3#2 In (5.12) 
#=0 1 - - Z  

which coincides with Eq. (5.5) for f =  1. The finite-size effects taken into 
account in Eq. (5.9) considerably change the final result. Some manipula- 
tions with power series given by Eq. (5.9) produce the following result: 

Eq. (5.9) = 1 + z2 IzN (1 N z ]  
-t ( l - z )  2 -~ 1 - z  ( l - z )  2 -z?ZzN (5.13) 
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Recall now that in the nonrandom case 

1 -  e -  2J 1 -  igm 
z = tanh j 

l + e -  2J l + iem 

Because of this, 1 - z = 2iem; accordingly, 

= tanh # - - -  

Also, one has 

1 - e  -2~'  - 2 i g p / ~  . ep 
1 +e-Z~-z(_Zi~p/x f l2  ) - i x / -  ~ 

1 l ( i p e )  z 
c o s h / ~ = ~ ( e ' * + e  " ) ~ I + ~ \ ~ }  

But the last term is of O(e2), while all our calculations were made with 
accuracy up to O(e). Keeping this in mind and combining Eqs. (5.6) and 
(5.13), one obtains for the nonrandom case 

ln Z = N ln( l + e 2j) 

\,/5/ 
_( 

l) ,] 
4e2rn 2 + 2/--~m + 4e---5-~m 2 

(5.14) 

Performing rotation to the Euclidean time it--*2V, remembering that 
t = N/e, using m = rn'/x/-2 and 2V = N ~ and taking the limit ~ ~ 0, one 
obtains 

l n Z = N l n ( l + e - Z S ) + P 2 (  ~2--mm' 4m '21 ( 1 - e - m ' ~ ) )  (5.15) 

From here one obtains again the result (3.21), by using (3.23), i.e., 

<R2) = +  l n Z  p=o 

In order to extend the above results to the case of quenched disorder, 
several comments are in order. First, so far I have silently assumed that the 
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Bernoullian distribution for Ji, as it was defined, makes sense for our 
model. This is not the case, however, which can be understood by 
analyzing the limiting case f =  0. Going back to Eq. (3.6) and following all 
the steps which led to the computation of (R2) ,  one can easily recognize 
that the final result is going to be meaningless. Second, the same can be 
seen also from analysis of Eq.(3.19): When t/--,0 one obtains the 
meaningless result (R  2 ) = 0. Because of this peculiarity, it is meaningful to 
consider the case of two random couplings Jl and J2 so that Jl will occur 
with probability f and J2 with probability 1 - f .  Let, furthermore, for 
instance, Jl >> J2 (this does not actually play any role); then one practically 
recovers the situation with just one random coupling j = Jl. Evidently, one 
can easily extend the present treatment to the case of more than two 
couplings. 

Going back to Eq. (5.9), one needs now to replace everywhere z with 
fzl + (1 - f )  z2. Because z ~  1 -2iem, one obtains 

fz2 + (1 - f )  z2 = 1 - 2ieEfml + (1 - - f )  m2] - 1 - 2ierh 

After this, the rest of the calculation proceeds exactly as in the nonrandom 
case, so that in the final result, for (R2) ,  m' should be replaced by rh'. 
Unlike the treatment given in refs. 20 and 21, in the present case no 
approximations were made and no replica tricks were used. 

The results here, combined with those of Section 4, enable one to 
study rigorosly the nematic-isotropic transition for the case of random 
semiflexible polymers. This is going to be accomplished in a separate publi- 
cation. In the meantime, it is of pedagogical interest to obtain similar 
results for the general case of the 2d-component, one-dimensional Potts 
model. 

5.2. Conformat iona l  Statist ics of Potts-Type Random 
Copolymers 

Consideration of the Ising model case has helped to understand the 
main features related to conformational statistics of random copolymers. 
Because of this, one is left with the study of the Potts analog of Eq. (5.6) 
with, perhaps, the end points being also included in the summation [this 
corresponds to averaging over all initial and final configurations, as was 
explained in Eq. (2.2)]. For  q = 2d one has 

q/2 bonds sites 

Z =  2 e-NU' ~ 1-[ e Ji(l +zi.i+l(~;ti.2,+l) ~ (1 +~,6#.;(,,) (5.16) 
l=1 {~.} i j 

where now zi, i+ j = e J' - 1 and ~l = e 2 ~ -  1. 
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Consider first the case #t = 0 for all l and let for a moment all bonds 
be the same (nonrandom case); then one obtains (3~ 

b o n d s  

z =  1-I e 
{;.} 

= e J(N 1)~ zbqC (5.17) 
G 

In the last line the summation goes over all possible graphs such that b is 
the total number of bonds in a particular graph and r is the number of 
eonnected components for this graph (the isolated site is also regarded as 
a component). Although the expression in the second line in Eq. (5.17) is 
correct, it is not immediately obvious how it can be actually computed. 
Here I provide an explicit example of such a calculation, having in mind 
further generalizations to the case/~ # 0. Following ref. 15, it is convenient 
to use the identity 

ejaza, =-1 [(eJ + q _  l ) + ( e  a _  1)(qaa,):- 1)] (5.18) 
q 

This identity can be also equivalently rewritten as 

21 e J~,~: = - -  (1 + z6x, x,) (5.19) 
q 

where z=21/22 and ) ~ l = e J + q - 1 ,  2 2 = e J - 1 ,  and $).,):~q6~,2,-1. 
Unlike the usual Kronecker delta, the above introduced 6~,~, has a 
remarkable property which makes it very similar to the summations in the 
Ising model case. While in Ising case one has Z~ a = 0 and Y,~ a2= 2, in 
the present case one has 

$2,2, = 0 (5.20) 
2 '  

~ $~,2, c$'2,, ~,, = qj2,~:, (5.21) 
2'  

In, particular, when 2 = 2" one obtains J2,). = q - 1, so that 

g2 2,),= q(q - 1) (5.22) 
2 '  

The properties (5.20) and (5.22) are practically the same as for Ising spins 
(for q = 2 they are in complete agreement with the Ising case) and therefore 
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significantly simplify the calculations. Using Eqs. (5.19)-(5.22) in (5.16) 
(with #~ = 0 for all l), one obtains at once 

Z =  q[1 + (q - 1) e - J ]  N -  1 (5.23) 

which obviously coincides with Eq. (4.7), as expected. The real power 
of Eqs. (5.21)-(5.22) is going to be appreciated when #+-~0. Let, for 
simplicity, only one of #~ be left nonzero. This by no means diminishes the 
generality of the method, as will become apparent shortly. By analogy with 
Eq. (5.19), one can also write 

e,,,a+,;,i =--~1 [1 + daj.,~<,}] (5.24) 
q 

where 21 = e " + + q  - 1 and d =  (e ~ ' -  1)/21. Now, instead of Eq. (5.18), one 
gets 

{;.} i j 

(5.25) 

Using the same type of expafision as given by Eqs. (5.7) and (5.8) and 
employing the Ising-type properties of S's, one is left with the following 
result: 

1 bonds  sites 

q-~ ~ H (1 +za;,,,;.,+l) H (1 +ec~#,;/,) 
{;~} �9 j 

-- 1 + ( N -  1) 22z + ( N -  2) z2z2 -~- ( N -  3) 22z 3 + ... + z2zN 1 (5.26) 

which formally coincides with that given in Eq. (5.9), except now z and 2 
may have different meanings. Recalling that eut + q - 1 ,,~ q - ipe /x f2  ~ q 

and e ~ ' -  1 ~ - i p e / x / 2 ,  we see that in the present case 2 ~ - i p e / q  x /2 ,  
while 

1 - -  e - j  1 - g r n  

Z - - l + ( q _ l )  e / l + ( q _ l ) ~ m  ~ l - q e m  

Making appropriate rescalings of m and p, one obtains back the Ising case, 
Eq. (5.9), and thus the rest of the arguments for both the random and non- 
random cases coincide with that already discussed for the Ising case. This 
concludes the discussion of Potts-type random copolymers. 



314 Kholodenko 

6. D I S C U S S I O N  

In previous sections a new model of the DSAW was considered in 
some detail based on earlier reported results of ref. 3. Here, I discuss briefly 
how this model is related to the models of DSAW (7) already considered in 
the literature. Let F(z) be the generating function of random walks 
(Gaussian, self-avoiding, etc.) on some d-dimensional lattice, 

F ( z )  = ~, CN zN (6.1) 
N 

where C N is the total number of walks of N steps. Let, furthermore, GN(i , j) 
be the total number of walks starting at the point i and ending at the 
point j; then, because of the translational invariance, one obtains CN = 
~,i GN(]i--Jl) = GN(p = 0 ) ,  where the last equation represents the p = 0 part 
of the Fourier-transformed G u .  In the case of the DSAW discussed in ref. 7, 
one needs to introduce G ~ ( l i -  J I)-* G~(p = 0), so that, instead of Eq. (6.1), 
one obtains 

N R N 

(6.2) 

where C~v=G~v(p=0). Because Eq. (6.2) is equivalent to Eq. (2.10) of 
ref. 7, the rest of the calculations of ref. 7 follows. Taking into account 
Eqs. (2.1), (2.2), (3.6), and (4.3), one concludes that 

~. C~ W R = ZN(j, 2d) (6.3) 
R 

where on the rhs of Eq. (6.3), the N-site, one-dimensional, 2d-component 
Potts model (in zero field) partition function is written and j is related to 
W in the way described in the previous sections. 

Notice as well that (R2) ,  given by Eq. (3.19), is obviously related to 
~ given in ref. 7. Unlike the situation in ref. 7, Eq. (3.19) does not contain 
the fugacity z, which, in turn, is determined by the average polymer length 
N(z, W) given by 

.N(z, W) = z ~zz In Z(z, W) (6.4) 

The authors of ref. 7 admit that the explicit form of 2r is rather complicated 
in general, and they do not provide it. The authors of ref. 7 also notice 
some nonuniversalities of the scaling functions for DSAW models. They 
found that these nonuniversalities are caused by the sensitivity of the 
scaling functions to the choices of lattices. 
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In Section 5, I have noticed that Eq. (3.19) loses its meaning in the 
limit q + 0. In this limit one obtains (R 2) =0, which is clearly physically 
meaningless. On the other hand, when ~ + o0, the results for (R 2) become 
insensitive to the lattice structure. This situation corresponds exactly to the 
scaling limit considered in ref. 7. 

Thus, I have demonstrated, that as long as ~/r 0, the model discussed 
in the previous sections is well defined and can be used to describe both 
flexible (~/-+ 0 + but q 50)  and semiflexible (~/-+ oo) polymers. 

In addition, use of the results of ref. 3 combined with that of Section 5 
allows one to study the nematic order in solutions of random semiflexible 
polymers. This is going to be presented in a separate publication. 

The Ising-like treatment of the Potts model briefy discussed in 
Section 5 can be extended, in principle, to higher dimensions. In this case, 
however, the situation is complicated by the fact, that in addition to 
Eq. (5.22), one is forced to consider quantities such as Z~., 53 etc., which ),2" 
are nonzero, in general. In case of two dimensions it is possible to collect 
Ising-like graphs, i.e., the set of various closed loops. Now, unlike the Ising 
case, each loop will be multiplied by a factor of ( q -  1); see Eq. (5.22). This 
leads to some nontrivial results to be discussed elsewhere. Formulation of 
the Ising model in terms of Grassmann-type anticommuting variables is 
well known. (31) One can perform a similar type of calculation for the Potts 
model along the lines recently discussed in ref. 32. 

Finally, in a previous paper, (3~ I have demonstrated a very close con- 
nection between the path integral formalisms describing the Dirac particle 
and the heterotic superstring (which is nothing but the random surface 
with rigidity, when the Euclidean version of superstrings is considered). 
The methods I used in ref. 3 are essentially of differential geometry. If such 
a connection exists between the continuous formulations, one might 
anticipate that there might be as well some connection between the discrete 
formulations. At the moment, this is an entirely open problem. 
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